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Bug detection has been shown to be an effective way to help developers in detecting bugs early, thus, saving

much effort and time in software development process. Recently, deep learning-based bug detection approaches

have gained successes over the traditional machine learning-based approaches, the rule-based program analysis

approaches, and mining-based approaches. However, they are still limited in detecting bugs that involve

multiple methods and suffer high rate of false positives. In this paper, we propose a combination approach

with the use of contexts and attention neural network to overcome those limitations. We propose to use as the

global context the Program Dependence Graph (PDG) and Data Flow Graph (DFG) to connect the method

under investigation with the other relevant methods that might contribute to the buggy code. The global

context is complemented by the local context extracted from the path on the AST built from the method’s body.

The use of PDG and DFG enables our model to reduce the false positive rate, while to complement for the

potential reduction in recall, we make use of the attention neural network mechanism to put more weights on

the buggy paths in the source code. That is, the paths that are similar to the buggy paths will be ranked higher,

thus, improving the recall of our model. We have conducted several experiments to evaluate our approach on

a very large dataset with +4.973M methods in 92 different project versions. The results show that our tool can

have a relative improvement up to 160% on F-score when comparing with the state-of-the-art bug detection

approaches. Our tool can detect 48 true bugs in the list of top 100 reported bugs, which is 24 more true bugs

when comparing with the baseline approaches. We also reported that our representation is better suitable for

bug detection and relatively improves over the other representations up to 206% in accuracy.
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1 INTRODUCTION

Improving software quality and reliability is a never-ending demand [Amodio et al. 2017; Bhatia
and Singh 2016; Bielik et al. 2016; Hindle et al. 2012; Kim et al. 2018; Patra and Pradel 2016]. Several
approaches have been introduced to help developers in detecting and fixing software defects to
improve software quality [Bian et al. 2018; Cole et al. 2006; Engler et al. 2001; Jin et al. 2012; Olivo
et al. 2015; Toman and Grossman 2017], ranging from static approaches (e.g., program analysis, bug
detection, bug prediction, model checking, validation and verification, software mining, etc.) to
dynamic approaches (e.g., testing, debugging, fault localization, etc.). Among them, bug detection
helps developers to detect bugs early by scanning the source code statically and determine if a
given source code is buggy [Li and Zhou 2005; Liang et al. 2016; Nguyen et al. 2009b; Pradel and Sen
2018; Wang et al. 2016a,b; Wasylkowski et al. 2007]. Bug detection has been shown to be effective
in improving software quality and reliability [Bian et al. 2018; Cole et al. 2006; Engler et al. 2001; Jin
et al. 2012; Olivo et al. 2015; Toman and Grossman 2017]. The existing state-of-the-art bug detection
approaches can be classified into the following:

• Rule-based bug detection. In this type of approaches, several programming rules are pre-
defined to statically detect common programming flaws or defects. A popular example of this
type of approaches is FindBugs [Hovemeyer and Pugh 2007]. While this type of approaches
is very effective, new rules are needed to define to detect new types of bugs.

• Mining-based bug detection [Bian et al. 2018; Cole et al. 2006; Engler et al. 2001; Jin et al. 2012;

Li and Zhou 2005; Olivo et al. 2015; Toman and Grossman 2017]. To overcome the pre-defined
rules, the mining-based approaches rely on mining from existing source code. Typically, this
type of approaches automatically extracts implicitly programming rules from program source
code using data mining approaches (e.g., mining frequent itemsets or sub-graphs) and detects
violations of the extracted rules as potential bugs. These mining-based approaches still have
a key limitation in a very high false positive rate due to the fact that it cannot distinguish the
cases of incorrect code versus infrequent/rare code.

• Machine learning-based bug detection [Pradel and Sen 2018; Wang et al. 2016a,b; Wasylkowski

et al. 2007].With the advances of machine learning (ML) and especially deep learning models,
several approaches have been proposed to learn from previously known and reported bugs
and fixes to detect bugs in the new code. While the ML-based bug detection models [Nam and
Kim 2015] rely on feature selections, the deep learning-based ones [Pradel and Sen 2018;Wang
et al. 2016b] take advantages of the capability to learn the important features from the training
data for bug detection. Showing the advantages over the traditional ML-based bug detection
models, the deep learning-based approaches are still limited to detect bugs in individual
methods without investigating the dependencies among different yet relevant methods. In
practice, there exist several cases that bugs occur across more than one method. That is, to
decide whether a given method is buggy or not, a model needs to consider other methods
that have data and/or control dependencies with the method under investigation. Due to that,
the existing deep learning-based approaches have high false positive rates, making them
less practical in the daily use of software developers. For example, DeepBugs [Pradel and
Sen 2018] is reported to have a high false positive rate of 32%. That is, approximately one
out of 3 reported bugs is not a true bug, thus, wasting much developers’ efforts. Our study
(Section 4.3.1) also showed a false positive rate of 41% for DeepBugs on our dataset.
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To overcome the aforementioned limitations of the state-of-the-art approaches while still taking
advantage of deep learning capability, we propose a combination approach with the use of contexts
and attention neural networks. In order to detect whether given methods are involved in bugs
that might involve individual or multiple methods, we propose to use the Program Dependence
Graph (PDG) [Ferrante et al. 1987] and Data Flow Graph (DFG) [Yourdon 1975] as the global context
to connect the method under investigation with other relevant methods that might contribute to
identifying the buggy code. The global context is complemented by the local context extracted
from the path on the AST built from the method’s body. The use of PDG and DFG enables our
model to reduce the false positive rate when matching the given code against the buggy code in
the past because two source code fragments are similar not only if their ASTs are similar but also if
the global contexts in the PDG and DFG are similar. With this strategy, our model would increase
its precision in detecting the buggy methods. However, to complement for the potential reduction
in recall (i.e., our model might miss buggy code due to its stricter conditions on code similarity
when additionally using the PDG/DFG), we make use of the attention neural network mechanism
to put more weights onto the buggy paths in source code. That is, the paths that are similar to the
buggy paths will be ranked higher, thus, improving recall.
Our approach works in three phases. In the first phase of building the representation for local

context for buggy and non-buggy code, our model constructs the AST for a given method’s body
and extracts the paths along the AST’s nodes to capture the syntactic structure of the source
code. Prior works [Alon et al. 2018; Nguyen et al. 2009a] have shown that syntactic structure of
source code can be approximately captured via the paths along their nodes with certain lengths.
Word2Vec [Mikolov et al. 2013a] is used on the AST nodes along the collected paths to convert them
into vectors to capture the surrounding nodes in the paths. After using Word2Vec, the generated
AST node vectors are fed into an attention-based Gated Recurrent Unit (GRU) layer [Cho et al.
2014] that allows our model to encode and emphasize on the order of the nodes in a path, i.e.,
on the nested structures in the AST. Also, we convert the node vectors into matrices and feed
them to an attention Convolutional layer [Yin et al. 2015] that allows our model to emphasize the
local coherence patterns in matrices and put more weights on the buggy paths. After that, we use
Multi-Head Attention [Vaswani et al. 2017] to combine the results from the attention GRU layer
and attention Convolutional layer together as the path local context representation modeling the
content of a path.
In the second phase of integrating the global context modeling relations among paths from

methods , we build the PDG and DFG, and extract the subgraphs relevant to a method. Unlike the
learning of local context representations for paths within an AST built from a method’s body using
GRU and Convolutional layers, our model uses Node2Vec [Grover and Leskovec 2016] to encode
the PDG and DFG into embedded vectors to capture relations between relevant paths. Node2Vec
is a widely used network embedding algorithm to convert large graphs (e.g., a PDG of a project)
into low-dimensional vectors without too much graph structural information loss for efficient
processing. After having both local context and global context representations for each path, we
can get the representation for each method by directly linking all merged path vectors. In the last
phase, we use a convolutional layer to classify the vectors into two classes of buggy and non-buggy
code. Based on the results vectors, we use SoftMax to process and set up a threshold to pick the
number of potential buggy methods to report for the source code under investigation.
We have conducted several experiments to evaluate our approach on a very large dataset with

+4.973Mmethods in 92 different versions of 8 large, open-source projects. We compare our approach
with the state-of-the-art approaches in two aspects. First, we compare our tool against the existing
bug detection tools using rule-based techniques including FindBugs [Ayewah et al. 2007], mining

techniques including Bugram [Wang et al. 2016a] and NAR-miner [Bian et al. 2018], and deep
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learning techniques including DeepBugs [Pradel and Sen 2018]. The results show that our tool
can have a relative improvement up to 160% on F-score when comparing with other baselines
in the unseen project setting and a relative improvement up to 92% on F-score in the unseen
version setting. Our tool can detect 48 true bugs in the list of top 100 reported bugs, which is 24
more true bugs when comparing with the baselines. Second, we compare our representation with
local and global contexts against the state-of-the-art code representations that are used for deep
learning models in code similarity including DeepSim [Zhao and Huang 2018], code2vec [Alon
et al. 2018], Code Vectors [Henkel et al. 2018], Deep Learning Similarity [Tufano et al. 2018], and
Tree LSTM [Tai et al. 2015]. We used those representations with our attention-based bug detection
model and compared with the results from our tool with our representation. We reported that our
representation can improve over the other representations up to 206% in F-score in the unseen
project setting and up to 104% on F-score in the unseen version setting. Our tool can detect 48 true
bugs in top 100 reported ones, which is 27 more true bugs when comparing with the baselines.
Furthermore, we conducted experiments to study the impact of the components in our model on
its accuracy. We found that while global context in the PDG and DFG improves much in Precision,
Multi-head Attention mechanism helps improve much in Recall to make up for the reduction in
Recall caused by the stricter condition in the PDG and DFG as the global context.
In this paper, we make the following contributions:

• A new code representation specialized for bug detection. To the best of our knowledge,
our work is the first to learn code representation specializing toward bug detection in three
novel manners: 1) directly adding weights for differentiating buggy and non-buggy paths
into code representation learning; 2) combining the local context within an AST and global
context (relations among paths in the PDG and DFG) for bug detection; and 3) integrating
inter-procedural information using the PDG and DFG.

• Anovel bug detection approach.We build a new attention-basedmechanism bug detection
approach that learns to aggregate different AST path-based code representations into a single
vector of a code snippet and to classify the code snippet into buggy or non-buggy.

• An extensive comparative evaluation and analysis. Through a series of empirical stud-
ies, our results show that our approach outperforms the state-of-the-art ones.We also compare
our learned code representation with other existing ones and the comparative empirical
results show that our code representation is more suitable for detecting bugs than others.
Our replication package can be found on our website [Pro 2019].

2 MOTIVATING EXAMPLE AND APPROACH OVERVIEW

2.1 Motivating Example

In this section, we will present a real-world example and our observations to motivate our approach.
Figure 1 shows an example of a real-world defect in the project named hive in GitHub. The bug

involves three methods in which the method getSkewedColumnNames (method 1) retrieves the
column type information from the input alias via the method getTableForAlias (method 3) and then
compares it with the provided column names via the method getStructFieldTypeInfo (method 2) in
order to find the suitable constant description for the current processing node. The bug occurred
due to the inconsistency in handling the case-sensitivity of the names: the type field name is in
the lowercase (line 2, method 2) while the alias name is not. To fix this bug, the developer added a
method call to convert the alias name into lowercase (lines 2ś3, method 3).
From this example, we have drawn the following observations:

Observation 1 (O1). This bug involves multiple methods. For developers to completely understand
this bug or for a model to automatically detect this, it is necessary to consider multiple methods
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Method 1.

1 public List <String > getSkewedColumnNames(String alias) {

2 ...

3 else {

4 //...

5 TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromObjectInspector(this.metaData.

6 getTableForAlias(tabAlias ). getDeserializer (). getObjectInspector ());

7 desc = new exprNodeConstantDesc(typeInfo.getStructFieldTypeInfo(colName), null);

8 }

9 ...

10 }

Method 2.

1 public TypeInfo getStructFieldTypeInfo(String field) {

2 String fieldLowerCase = field.toLowerCase ();

3 for(int i=0; i<allStructFieldNames.size (); i++) {

4 if (field.equals(allStructFieldNames.get(i))) {

5 return allStructFieldTypeInfos.get(i);

6 }

7 }

8 throw new RuntimeException("cannot␣find␣field␣" + field + "(lowercase␣form:␣" +

9 fieldLowerCase + ")␣in␣" + allStructFieldNames );

10 }

Method 3.

1 public Table getTableForAlias(String alias) {

2 - return this.aliasToTable.get(alias);

3 + return this.aliasToTable.get(alias.toLowerCase());

4 }

Fig. 1. A Motivating Example from the Project hive with Bug Report id HIVE − 60

and the dependencies among them. This type of cross-method bugs could easily occur in practice.
However, the existing ML-based bug detection approaches [Bian et al. 2018; Pradel and Sen 2018]
examine the code within a method individually, without considering the inter-procedural dependen-
cies. As an example, NAR-miner [Bian et al. 2018] derives non-association rules (e.g., if there is A,
then there is no B), and uses them to detect bugs occurring in each individual method. That approach
cannot detect this bug because it considers each method individually and this bug does not involve
a non-association rule on the appearances of any elements. As another example, DeepBugs [Pradel
and Sen 2018] uses deep learning on the names of the program entities in each method to detect
bugs. DeepBugs cannot detect this bug either because it does not perform intraprocedural analysis.
Moreover, the fixed method getTableForAlias does not contain the names similar to those of buggy
methods. In fact, toLowerCase is a widely used API and get is a popular method name. A model
cannot determine the error-proneness for this method by solely relying on those popular names.
Observation 2 (O2).When considering multiple methods to detect a bug, there exist multiple

paths on the representations that would be used to model the methods and their interdependencies,
e.g., the control flow graph (CFG), program dependence graph (PDG), or the abstract syntax tree
(AST). Due to the large sheer amount of paths needed to be considered, a model should not put the
same weights on all the paths. To learn from database of buggy code in the past, a model should
put more weights on the buggy paths than others. However, existing approaches [Alon et al. 2018;
Nguyen et al. 2009a] to represent code as graph-based embedding vectors are either putting weights
on frequently occurring paths or not weighting at all. For example, code2vec [Alon et al. 2018]
extracts the paths in the AST among program entities with dependencies and gives more weights
to frequent paths. Those paths are used as input to a deep learning model to learn the graph-based
embedding vectors for source code. Frequent paths might not be the most error-prone ones in a
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program. In contrast, the buggy paths might not be the frequent ones. For example, the lines 5ś7 in
the method 1 are in a buggy path, however, they are not one of the frequent paths in our collected
data for our experiment (which will be explained later). This is reasonable because code2vec [Alon
et al. 2018] was designed for measuring code similarity, rather than for bug detection. On the other
hand, Exas [Nguyen et al. 2009a] represents source code with a vector by encoding the paths with
up to certain lengths in the PDG. While it is successful in code similarity at the semantic level, it
considers all the paths with the same weights, thus, cannot be applied well to bug detection.

2.2 Key Ideas

With the above observations, we have built our approach with the following key ideas. First, to
capture the source code containing defects, in addition to represent the body of the given code,
we also use as the global context the Program Dependency Graph (PDG) [Ferrante et al. 1987]
and Data Flow Graph (DFG) [Yourdon 1975]. Such graphs enable us to consider the dependencies
among program entities across multiple methods, thus, enabling the representation of the buggy
source code involving multiple methods. In our example, it allows our model to capture the
relationships among the methods 1, 2, and 3 involving in the current bug. Specifically, it allows
the connections of the important nodes such as the connection between the variable typeInfo at
line 5 of the method getSkewedColumnNames (Method 1) and the parameter alias at line 2 of the
method getTableForAlias (Method 3), and the connection between the variable typeInfo at line 7
of the method getSkewedColumnNames (Method 1) and the variable field at line 2 of the method
getStructFieldTypeInfo (Method 2). From the two connections, the relation between the line 2 of the
Method 2 and the line 2 of the Method 3 can be captured. Thus, if our model has seen a similar
relation that causes a bug in the training data, it could catch this in the example.

Secondly, from Observation 2, we design an attention-based deep learning model to emphasize
to learn the buggy paths and use the PDGs and DFGs as the context to capture the relations among
the methods involving in a bug. The attention mechanism also helps in improving the ranking
of buggy candidates, thus improving the recall that was potentially affected by the use of PDG
and DFG in code matching. For example, in the history, there exists a bug that are revealed by the
above connection between the line 2 of the Method 2 and the line 2 of the Method 3. By adding a
weight for buggy paths with the attention mechanism, we could make all buggy paths have a higher
weight than the normal paths. In our approach, we would like to only use long paths because the
short paths are covered by the longer ones. In our example, the long paths can sufficiently cover
the needed information between the three methods to detect the bug.

2.3 Overview of Our Approach

Let us explain the overview of our approach. To determine whether source code in a given method
is buggy or not, our model relies on the following three main steps as illustrated in Figure 2:

• Attention-Based Local Context Representation Learning. First, our model parses the
given method to build an AST. It extracts the long paths and then uses the attention GRU
layer and the attention convolutional layer to build the representation for the method’s body.
Let us call it the local context because the paths are extracted within the given method.

• Network-Based Global Context Representation Learning. Second, in addition to con-
sidering the given method’s body, we also encode the context of the method by building the
Program Dependence Graph (PDG) and the Data Flow Graph (DFG) relevant to the method.
We call them the global context because they provide the relations between the given method
and other relevant methods in the project. We use the Node2Vec [Grover and Leskovec 2016]
for the encoding of the PDG and DFG.
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• Bug Detection. Finally, with the local and global contexts of the given method, we use a
softmax-based classifier to decide whether the method is buggy or not.

Fig. 2. Overview of our Approach.

In the step of building the local context, we choose the long paths over the AST built from the
method’s body. A long path is a path that starts from a leaf node and ends at another leaf node and
passes the root node of the AST. As shown in previous works [Alon et al. 2018; Nguyen et al. 2009a],
the AST structure can be captured and represented via the paths with certain lengths across the
AST nodes. The reason for a path to start and end at leaf nodes is that the leaf nodes in an AST are
terminal nodes with concrete lexemes. The nodes in a path are encoded into a continuous vector
via Word2Vec and the vectors are fed into two layers: attention-based GRU layer [Cho et al. 2014]
and attention Convolutional layer [Yin et al. 2015]. The GRU layer allows our model to encode and
emphasize on the order of the nodes in a path, i.e., on the parent-child relationships of the AST
nodes. In other words, the nested structures in an AST are captured and represented with GRU
layer. Moreover, the attention-based Convolutional layer allows our model to emphasize and put
more weights on the buggy paths. After that, we use Multi-Head Attention [Vaswani et al. 2017] to
combine the result from attention GRU layer and attention Convolutional layer together as the
path local context representation.
In the step of building the global context, we use the Node2Vec [Grover and Leskovec 2016] to

encode the PDG and DFG into embedded vectors. These two vectors are combined by the space
vectors of all nodes in each path. We use matrix multiplication and convert results together to get
the path representation vector. Then, we can have method representation by appending all paths’
vectors for each method. For the bug detection step, with the method vectors we can do the bug
detection with a softmax-based classifier. We will explain all the steps in details next.

3 OUR APPROACH

In this section, we delve into the details of the main steps of our approach.

3.1 Attention Based Local Context Representation Learning

Given a method, we use the following steps to learn a code representation using AST paths within
the method. We call it the local context as the paths used for code representation learning are
within the method. Figure 4 shows the overall steps of learning local context code representation.
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1 public BlockingInterface getProxy ()

2 throws IOException {

3 if (proxy == null) {

4 proxy = createProxy ();

5 }

6 return proxy;

7 }

(a) A method example. (b) The AST of the code in Figure 3a.

Fig. 3. An example and the AST for the code from the project hive .

Fig. 4. The process of learning Local Context Representation

3.1.1 Path Extraction. We extract paths from an AST built for a method, instead of source code
directly, because an AST helps capture better code structures. With the explicit representation
of structures via ASTs, our model could make distinction better between buggy and non-buggy
code structures. We use the well-known and widely-used Eclipse JDT package to build an AST for
a given Java method. As we do not want to lose important information of each method for bug
detection, we extract the minimum number of long paths that can cover all nodes in an AST of
a method in a greedy way. In Figure 3, for the method in Figure 3a, we build an AST and extract
four long paths as shown in different colors in Figure 3b. As a long path passes from a leaf node to
another via the root node in an AST, there are overlapping nodes among different long paths.

3.1.2 Learning AST Node Representation. We useWord2vec [Mikolov et al. 2013a], a neural network
that takes a text corpus as an input and generates a set of feature vectors for words in the corpus, to
learn a vector representation for each AST node. This step takes all of the AST nodes of a method
as the input, and generates a learned vector representation for each given AST node.
Specifically, in the process of AST node encoding, we treat the node content of an AST node

as one word. For example, in Figure 3b, the node "Block Stm" having a real value "{}" in AST is
considered as one word,word = ł{}”. Thus, we generate a sequence of words for each path. For
instance, we can generate the following ordered set of words: {łNull", ł==", łif()", ł{}", łroot",ł{}",
łReturn", łproxy"}, for the red path in Figure 3b, where łif()" is the If Stmt, the first ł{}" right after If
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Stmt is the Block Stmt, the łroot" is the Method Declaration, the second ł{}" is also the Block Stmt as
the path passes through the root.
Given a version of a project, we extract long paths from an AST for each method and generate

ordered sets of words for each path.We order the nodes in an AST path according to their appearance
order in source code. We generate embeddings for each node and preserve their order. Moreover, we
do not embed comments and do not differentiate specific strings and numbers during embedding,
as their values are normally too specific and do not contribute to model training for bug detection.

Collectively, we obtain a large corpus of words for AST nodes from all source code under study.
Each node is mapped to a word. We run Word2Vec on a large corpora to learn a vector NodeVi to
represent an AST node ni in a path of nodes P = n1,n2, ...,ni . All nodes in training are considered
to maximize the log value of the probability of neighboring nodes in the input dataset. We use
Word2Vec to train our own node representations by using all of the AST nodes from each project.
The loss function is defined as follows:

Lossi = min
i

1

i

i∑

j=1

∑

k ∈NNSr

− logHS{NodeVk |NodeVj }

L = min 1
i

∑i
j=1

∑
k ∈NNS − logHS{NodeVk |NodeVj } (1)

where L is the lose function for the nodes in P = n1,n2, ...,ni , NNS is the set of the neighboring
nodes of a node ni , and HS{NodeVk |NodeVj } is the hierarchical softmax of node vectors NodeVk
for the node nk and NodeVj for the node nj .

3.1.3 Learning Local Context Representation from AST Node Representations. After the previous
step of learning AST node representation, each path, P , can be represented as an ordered set of
AST node vectors, P = {NodeVi ,NodeVi , . . . ,NodeVn}, where n is the total number of nodes of the
path, and 1 ≤ i ≤ n.
To incorporate the previous buggy information into the representation learning, we add a

weight to a path if the path passes an AST node that is in one or multiple bug fixes. We use the
addition of weights to differentiate buggy and non-buggy AST paths. Specifically, if a node ni
from a path was in a bug fix, we apply the same weightw on all of the node vectors in the path,
P = w ∗ {NodeVi ,NodeVi , . . . ,NodeVn}, and the paths without any nodes in previous bug fixes
have no weight added. For example, if there is a bug fix (e.g., removing the whole line) in the line 4,
proxy = createProxy(), of the code example in Figure 3a, all of the node vectors of the blue path in
Figure 3b are assigned with the same weightw .
To learn a unified vector representation from the node vectors for a path, we use two different

approaches to learn path vectors capturing different aspects of key information.
[1] Attention-based GRU approach.We apply an attention-based Gated Recurrent Unit (GRU)

layer [Cho et al. 2014], using an attention layer on top of the GRU layer as the weights to apply
the importance on each time step during the training, to learn a path vector from a given set of
node vectors. We use GRU to capture the sequential patterns from ASTs. The GRU layer, using a
gating mechanism reported in [Cho et al. 2014], is a powerful and efficient model for learning a
representation from a given set of vectors. There are two key gate calculations at a time step t , the
reset gate rt and the update gate zt . The following calculation is for the j-th hidden unit at the time
step t :

r
j
t = σ (Wrxt +Urht−1)j (2)

z
j
t = σ (Wzxt +Uzht−1)j (3)
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h
j
t = (1 − z

j
t )h

j
t−1 + z

j
t h̃

j
t (4)

h̃
j
t = tanh(Wxt +U (rt ⊙ ht−1))j (5)

where xt is the node vector for the AST nodek in pathi as an input of the t time step, j denotes

the j-th element of a vector, the h
j
t , h

j
t−1 is the j-th element of the output embedding vectors at the t

and t − 1 time steps, the r
j
t is the j-th element of the reset gate vector at the t time step, the z

j
t is the

j-th element of the update gate vector at the t time step, σ is the logistic sigmoid function,W ,U are
the parameter matrices that can be learned during the training and the ⊙ is the Hadamard product.
Given a sequence of AST node vectors of a path, we pass one node vector to the GRU layer at

each time step and the GRU layer also generates an output vector at each time step. At the final
time step of the GRU, one path vector is generated. Over the whole process, the GRU takes a set of
node vectors as input vectors and produces a set of intermediate output vectors (i.e., the last output
vector is the final generated vector). We store the set of input vectors and the set of intermediate
output vectors from the GRU layer for the next step.
[2] Convolutional-based Approach. We apply an attention-based Convolutional layer in the

Convolutional Neural Networks (CNN) [Cun et al. 1989], using an attention-mechanism on top of a
Convolutional layer, to learn a path vector from a given set of node vectors. In the CNN, sequences
of node vectors are modeled into matrices. We use the CNN to capture the local coherence patterns
from the matrices of ASTs. Different node embeddings can be used to construct a matrix D, where
it has a structure n × d of D with only one channel (d is the size of node embedding).
In a convolution operation, a filter can convolute a window of nodes (e.g., 3 or 4) to produce a

new feature using the following equation: ci = σ (W ·hℓ(x)+b), where ci is the dot product of hℓ(x)
and a filter weightW. hℓ(x) is a region matrix for the region x at location ℓ. σ is non-saturating
nonlinearity σ (x) = max(0,x) [Krizhevsky et al. 2012]. Then the filter can convolute each possible
window of nodes and produce a feature map: c = [c1, c2, ..., ci , ...]. The weight W and biases b are
shared during the training process for the same filter, which enables to learn meaningful features
regardless of the window and memorizing the location of useful information when appearing.

Given a sequence of AST node vectors of a path, we use all node vectors to build a n ∗m matrix,
where n is the number of node vectors andm is the length of a node vector, and send the matrix to
the Convolutional (Conv) layer. At each time step, a sub-matrix is selected and used as an input
for the Conv operation and the Conv layer generates an output matrix. Over the whole process, a
set of matrices are built and used as inputs for the Conv layer that produces a set of intermediate
output matrices (i.e., the intermediate output matrix at the last time step is the final matrix). In the
Conv layer, a sequence of node vectors is transformed into a set of matrices. To reduce an obtained
matrix into one dimension vector, we apply another layer: fully connected layer in the CNN [Cun
et al. 1989]. We pass intermediate output matrices generated at different time steps into the fully
connected layer to generate 1-dimensional intermediate vectors. We store the set of input matrices
and the set of intermediate output 1-dimensional vectors from the Conv layer for the next step.
The attention-based mechanism enables our model to emphasize on the important paths that

have been observed to be buggy. That is the key advantage of our model in comparison with the
traditional or vanilla (standard backpropagation) GRU and CNN. While attention mechanism allows
a NLP model to focus on certain important words in a sentence, it is expected to help our bug
detection model to put and update more weights on the observed buggy paths.

3.1.4 Learning Path Vectors with Multi-Head Attention. In the previous step, given a sequence of
AST nodes, we use two approaches to learn vector representations for a path and different vector
representations capture different aspects of information of a path. To learn the unified vector for a
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Fig. 5. Multi-Head Attention: The scale in graph is of dot products with the square root of vector dimensions.

path, we still need to find a way to combine the two path vectors into one code vector without too
much information loss.
To do so, we apply the Multi-Head Attention (MHA) model [Vaswani et al. 2017] to learn a

unified representation. The Multi-Head Attention model is effective in learning representation
form different other representations. We build the MHA on top of the GRU and Convolutional
(Conv) layers as shown in Figure 5. Due to the page limit, we only introduce the basics of MHA.
In our case, we build a two-head attention and both heads have the exact same architecture, but
they take different inputs. Both GRU and Conv layers take input vectors at different time steps and
generate the corresponding output vectors at different time steps.
One head for the GRU layer, namely HG , takes the following inputs: a training target vector

(T ), all of the input vectors of the GRU layer at different time steps, namely V I
G , and all of the

intermediate output vectors from the GRU layer at different time steps, namely VO
G
. We define a

target vector to have the same length as the input vector. Also, we set all values in the T as 1 for
buggy and 0 for non-buggy.V I

G andVO
G

are both obtained in the previous step in Section 3.1.3. Then

the MHA conducts a dot product between the T and the V I
G (i.e., AST node vectors), and scale the

product result by dividing it using the square root of the vector dimension of V I
G , denoted as d .

After the scale process, we apply a softmax function on the result of the scale process, denoted

as so f tmax(T · V I

G√
d

). Last, we apply the doc product operation between the result of the softmax

operation and all of the intermediate output vectors from GRU, VO
G
. The whole process can be

expressed as V
p

G
= so f tmax(V

T · V I

G√
d

) · VO
G
, where V

p

G
denotes a path vector learned from HG .

Another head for the Convolutional layer, namely HC , works the same way as HG , except that
HC takes the input vectors and the intermediate output vectors from the Convolutional layer. We

use V
p

C
to denote a path vector learned from HC .

The final step of MHA is to concatenate V
p

G
and V

p

C
to generate a unified one-dimensional path

vector that incorporates local context within a method.

3.2 Network Based Global Context Representation Learning

3.2.1 Overview. As shown in Section 2.1, a bug can involve multiple methods, thus it is critical to
model the relations among methods, even the paths in different methods, into code representations
for bug detection. To complement the local context of buggy code, which is represented by buggy
paths in the AST, we capture the global context to integrate the relations among buggy methods
into our model via program and data flow dependencies. Figure 6 shows the general overview
of our process to model the global context. The first step is to extract the Program Dependence
Graph (PDG) and Data Flow Graph (DFG) from the source code of a Java project. In the second
step, the graphs are used as the input for a process to vectorize the nodes. To achieve that, we use
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the Node2Vec [Grover and Leskovec 2016] to capture the data and control dependencies between
relevant program statements. Then, at the third step, the related statements in the long paths in the
AST identified in the previous step for the local context are used and encoded via the representation
vectors computed via the Node2Vec [Grover and Leskovec 2016]. Finally, the representation vectors
for the PDGs and those for the DFGs are combined via matrix multiplication. The resulting vectors
are then integrated with the vectors for the local context computed earlier to produce the path
representation vectors, namely global context representation. Let us explain each step of this
process in details.

Fig. 6. Learning global Context Representation and generating Long Path Representation Vectors

3.2.2 Generating Graphs from Java Projects. As we use path-based code representation to model a
method, we aim to represent the fine-grained relations among methods, i.e., the relations among
paths from different methods. Specifically, we use the Program Dependence Graph (PDG) [Ferrante
et al. 1987] and Data Flow Graph (DFG) [Yourdon 1975]. Given a version of a project, we generate
the PDG and DFG for the entire project at the statement level. We used the Eclipse plugin Soot [Soot
[n. d.]] to produce the PDG, and the plugin WALA [WALA [n. d.]] to produce the DFG.
For the PDG, we use the classes from soot.toolkits.graph.pdg in Soot to implement a Program

Dependence Graph as defined in [Ferrante et al. 1987]. Soot can handle inter-procedural analysis
for PDGs. As for the DFG, we use the classes from com.ibm.wala.dataflow in WALA to generate a
data flow graph [Kildall 1973]. In our problem, we would like to generate a large data flow graph
which contains all data flows in a whole project. Given a project, the WALA can generate a set of
data flow graphs for the project and we connect them to build the entire DFG for the whole project.
Currently, for both PDG and DFG, we handle virtual method calls in a conservative way using

declared types for program entities. We support no pointer analysis, data flow through heap-
allocated objects is approximately and conservatively captured via explicitly declared objects.

3.2.3 Using Lower Dimension Vectors to Represent Graphs. Once the two graphs are generated for
a project, we convert the large graphs (e.g., a PDG can be very large with a high number of nodes
and edges) to low-dimensional vectors without much information loss for efficient processing. We
apply the widely used network embedding algorithm, the Node2Vec [Grover and Leskovec 2016],
to encode all of the nodes in our PDGs and DFGs. During the learning of node embeddings, the
Node2Vec can encode a node with the information of the node’s surrounding structures.

Technically, for each graph (i.e., the PDG or DFG), a bag of nodes is extracted in which each node
m represents a code statement and the neighboring nodes ofm represent the code statements with
dependencies onm. A neural network in the form of a skip-gram model [Mikolov et al. 2013b] is
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Fig. 7. Using Lower Dimension Vectors to Representation Graphs

trained with the input layer containing each nodem for a statement and the output layer containing
the neighboring nodes ofm for the statements with dependencies on the current statement. The
output of the process is the feature matrix with the dimension of n × D, where n is the number
of nodes/statements in the input layer and D is the number of representation features in the
lower dimension vector space. In other words, each row is a feature vector representing a code
statement in the input graph. The representation vectors capture the neighboring structures of the
statements/nodes.

As it is not designed for source code, the Node2Vec models the network data that can flow two
ways between two nodes. Our graphs, PDG and DFG, are one-directional. Therefore, we adapt the
Node2Vec in the following ways. Inspired from NAR-miner [Bian et al. 2018], we set the weight
weiдht = 1 to a directional edge from node A to node B if these two nodes have a dependency
in a program graph (i.e., the PDG or DFG). We also assign another weight weiдht = −1 to the
opposite directional edge from node B to node A, meaning that there is no dependency from B

to A in a program graph. For example, in the example code in Figure 3a, there is a relationship
between i f (proxy == null) and proxy = createProxy(). In the PDG, the weight on the edge
from i f (proxy == null) to proxy = createProxy() is 1, and the weight on the edge from proxy =

createProxy() to i f (proxy == null) is -1. Then, we apply the Node2Vec on the PDG and DFG,
separately to compute network embedding, and obtain a vector for each node representing each
code statement.

Fig. 8. Learning global Context Representation Vectors for Long Paths

3.2.4 Learning Global Context Representation Vectors for Long Paths. Once we obtain the vector
representations for all of the nodes/statements in the PDG and DFG, we use them to encode the
long paths in the AST that were extracted in the local context computation step. We denote a
node in a PDG as N P , and a node in a DFG as ND . Several long paths can go through the same
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statement and a statement can have multiple AST nodes. For example, in Figure 3b, the statement,
i f (proxy == null), includes four AST nodes: Proxy, ==, Null, and If Stmt. There are three paths,
the yellow, red, and blue paths, passing through these nodes. Therefore, given a project, we can
extract all of the mappings between the long paths and the statements, where a path is mapped to
a set of unique statements and each statement is a node in the graph (i.e., a PDG/DFG). The vectors
representing each of those statements, i.e., the nodes in the PDG and DFG, were computed via the
Node2Vec in the previous step. Thus, we can use the vectors for those nodes N P and ND to capture
the global context and represent a long path in the AST. Specifically, a long path is represented by
the average vector of the vectors for the corresponding PDG nodes (namely V P

PDG ) and the average

vector of the vectors for the corresponding DFG nodes (namely V P
DFG ).

3.2.5 Learning Path Representation Vectors for Long Paths. In the final step for learning the represen-
tation vectors for long paths, we combine the local context and the global context vector representa-
tions for the paths. Given a path with a local context vector representation (in Section 3.1), denoted
asV P

local
, we use the following steps to combineV P

PDG andV P
DFG withV P

local
: First, we apply Matrix

Multiplication (denoted as ·) toV P
local

andV P
PDG , and alsoV

P
local

andV P
DFG . Thenwe can have the path

representation vector by simply merging the above two results:V P
= V P

PDG ·V P
local

T
,V P

DFG ·V P
local

T
.

Matrix multiplication can effectively combine such vectors to make the combined vector more
expressive. We tested other aggregation mechanisms, e.g., vector concatenation, and matrix multi-
plication produces better result.

Once we have all of the path representation vectors, a methodM can be represented as a set of
path vectors with local and global contexts:M = {V P

1 . . .V
P
i . . .V

P
n }, where V P

i is the unified path
vector for the i-th path in M , 1 ≤ i ≤ n, and n the total number of long paths for the method M .
Within a project, each method can have a different number of long paths. To make sure all of the
methods can be modeled with the same number of path vectors, we choose the method with the
largest number of long paths among all methods, and use that number as the default value for the
number of paths to model a method. If a method has fewer long paths than the default number, we
perform zero padding for the vector representations.

3.3 Bug Detection

After the above two steps, we obtain a representation for each method. We build a classic CNN
architecture to classify whether a method is buggy or not, given a set of method representations.
We build the following layers to process method representations: First, a Convolutional layer is
applied on the set of method representations. Second, the Max pooling and fully connected layers
are applied. Third, we use a SoftMax layer to the classification.

4 EMPIRICAL EVALUATION

4.1 Research Questions

We have conducted several experiments to evaluate our model. Specifically, we seek to answer the
following research questions:

RQ1. Bug Detection Comparative Study. How well our approach perform in comparison with
the existing state-of-the-art bug detection approaches?

RQ2. CodeRepresentationComparative Study. Is our code representationwith local and global
contexts more suitable than existing code representations in bug detection?

RQ3. SensitivityAnalysis.Howdo various factors affect the overall performance of our approach?
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Table 1. Statistics on Dataset

Project

Name

# of Versions # of

Files

# of

Methods

# of Buggy

Methods

pig 9 8k 95k 21k

avro 7 2k 30k 1k

lucene-solr 14 93k 1.032M 518k

hbase 9 14k 318k 258k

flink 14 49k 419k 173k

hive 18 53k 981K 411k

cloudstack 11 55k 766k 307k

camel 10 172k 1.332M 135k

Total 92 402K 4.973M 1.824M

4.2 Experimental Methodology

4.2.1 Data Collecting and Processing. We conduct our study on eight well-known and large open-
source Java projects with different versions of each project. In total, we got 92 versions of these
projects with +4.9 million Java methods (Table 1). For each project, we collect source code and
commits from the Github repository, and bug reports from the issue tracking system of the project.
Specifically, we use the following steps to process the data of a project:

• First, we download all bug reports that are marked as resolved or closed and bug from the JIRA
issue tracking system. The details of a report has a field named Fix Versions which indicates
the bug fix locations. We extract the bug id and the version numbers from a bug report.

• Second, for a version of a project, we download the commits from the Git repository. We
use the same approach as the ones used in [Mockus and Votta 2000; Ray et al. 2016, 2014]
to process each commit message and mark it as a bug-fix if the message contains a bug id
and at least one of the error related keywords: {error, bug, fix, issue, mistake, incorrect, fault,
defect, flaw and type}.

• Once we identify all of the bug-fixes in the previous steps, we download the source code
of the project version as a clean version and use the bug-fix commits to recover the buggy
version from the source code, as a code commit records all of the additions and deletions.
Specifically, we use the additions in commits to locate the methods where code fixes occurred,
and then roll the methods back to the states before the fixes to obtain the buggy code.

4.2.2 Experiment Setup and Procedure. To answer our research questions, we use the following
procedures and setups.

RQ1. (Bug Detection Comparative Study) Analysis Approach.

Comparable Baselines. We compare our approach with the following state-of-the-art approaches:

• DeepBugs[Pradel and Sen 2018]: DeepBug is a bug detection approach with a deep learning
model on the name-based information in source code. We used the default values of their
model and tried different values for vocabulary size, and kept the value giving the best result.

• Bugram[Wang et al. 2016a]: Bugram uses n-gram to evaluate a given method and decides
its bugginess by picking the top-ranked possibilities for each n-gram. With our dataset, we
tried various values of n and sequence lengths, and kept the ones giving best results.

• NAR-miner[Bian et al. 2018]: NAR-miner mines negative rules on the code (e.g., if A then
not B), and then use them to detect bugs. We used the default values for their model.
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• FindBugs[Ayewah et al. 2007]: FindBugs is an open-source static analysis tool that analyzes
Java class files to detect program defects. The analysis engine statically encodes more than 300
different bug patterns using a variety of techniques. We used the default values for FindBugs.

We conduct our experiments in two settings:

• Detecting bugs in unseen projects (Cross-Project). This setting is used to test the ability
of a model to detect bugs on unseen projects (i.e., on a project that is not included in the
training data). We train a model on all of the versions of 7 randomly chosen projects in our
dataset, and test the trained model on the remaining project. We repeat 8 times for cross
validation and calculate the average.

• Detecting bugs in unseen versions of a project. This setting is used to test the ability of
a model trained on all of the existing versions of a project and other projects to detect bugs
on an unseen version of a project. We use all of the versions of 7 randomly picked projects
and all of the previous versions of the 8th project as the training data and use the newest
version of the 8th project as the testing data.

Qualitative Analysis. In this experiment, for comparison, we make qualitative analysis by com-
paring the top 100 results that each model reported on the same randomly chosen version of a
project. We manually verified each reported bug. We computed how many true bugs each model
can detect in top 100 results, how many true bugs detected by the baseline models were covered by
our model, how many bugs our model did not cover, and how many new bugs our model can find
when comparing with the baseline models.

Tuning our approach and the baseline models.We tuned approaches in the cross-project setting.
For simplicity, we use the same set of parameter settings for approaches in both of the above
mentioned experimental settings once the best settings are identified.
We tuned our model with the following key hyper-parameters:
1. Epoch size (i.e., 100, 200, 300),
2. Batch size (i.e., 32, 64, 128, and 256),
3. Learning rate (i.e., 0.005, 0.010, 0.015),
4. Vector length of word representation and its output (i.e., 150, 200, 250, 300),
5. Convolutional core size (i.e., 1x1, 3x3, 5x5), and
6. The number of convolutional core (i.e., 1, 3, and 5).
We tuned the baseline models with some parameters to obtain the best results on our dataset. We

tuned the vocabulary size for the DeepBugs, the gram size, sequence length range, minimum token
occurrence, and reporting size for the Bugram, and the threshold of frequent itemsets, the maximum
support threshold of infrequent itemsets, the minimum confidence threshold of interesting negative
rules min_conf for NAR-miner. FindBugs is a rule-based tool and we directly used its default setting.

RQ2. (Code Representation Comparative Study) Analysis Approach.

In this work, for bug detection, we introduce a novel path-based code representation with
graph-based local and global contexts. We aim to compare our representation with other baseline
representations that are used for source code similarity in the context of bug detection.
Comparable Baselines: We compare our code representation with the following state-of-the-art

code representations on bug detection:

• DeepSim[Zhao and Huang 2018]: DeepSim represents source code for code similarity. It
encodes control flows and data flows into a semantic matrix in which each element is a high
dimensional sparse binary feature vector.

• code2vec[Alon et al. 2018]: code2vec uses most frequently paths on the AST from one leaf
node to another via going up in the tree.
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• Code Vectors[Henkel et al. 2018]:The approach uses abstractions of traces obtained from
symbolic execution of a program as a representation for learning word embedding.

• Deep Learning Similarity (DL Similarity) [Tufano et al. 2018]: This approach applies deep
learning on 4 different types of representations, including Identifiers, AST, Control Flow
Graph, and Bytecode of a method, to learn a code representation.

• Tree-structured LSTM (Tree-based LSTM) [Tai et al. 2015]: Tree-based LSTM gets the
representation of each method by training a tree-structured LSTM model with the AST of
the source code.

As those representations are not aimed for bug detection, to be fair, we compare only the code
representation part of our approach with those representations. To do so, we build a baseline as
follows: we use each of those code representations with our model to detect bugs.
Similar to the analysis approach for RQ1, we also conduct our experiments in the two settings

cross-project and cross-version, and the top-ranked qualitative analysis.
Tuning our model and the baselines: As in RQ1, we use the same set of parameter settings of an

approach for both experimental settings. For our approach, we use the best parameter settings
learned in RQ1 to run our approach in this experiment. For the baselines, there are no key parameters
in the code representation learning of the baselines.
RQ3. Sensitivity Analysis Approach.

For sensitivity analysis, we would like to evaluate how various factors including paths over AST,
multi-head attention, Program Dependency Graph, and Data Flow Graph impact on our model’s
accuracy in bug detection. To perform sensitivity analysis, we add each element into the model one
by one in each of the two settings with different parameters.

4.2.3 Experiment Metrics. We use the following metrics to measure the effectiveness of a model:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F_score =

2 ∗ Recall ∗ Precision
Recall + Precision

Where TP = True Positives; FP = False Positives; FN = False Negatives; TN = True Negatives.

Recall measures how many of the labeled bugs can be correctly detected, while Precision is
used to measure how many of the detected bugs are indeed labeled as a bug in the bug tracking
system. Note that in the bug tracking system, there exist cases in which the occurrences of the
labels or bug-indicating words do not really show bug fixes. Thus, to complement for that, in the
comparative study, we picked 100 results and manually verified if they are truly bugs or not.
In our qualitative analysis, we also computed related Recall, Precision, and F-score. We use the

term łrelatedž to refer that we only consider the top 100 results from a model. For related Recall,
we collect all true bugs found by a model in the top 100 results and regard them as the total true
bugs. We calculate the related Recall in the top 100 results with the total true bugs. For related
Precision, we regard top 100 results as the total reported results and calculate the Precision with
100 results. Thus, TP + FP is equal to 100. For related F-score, we use related Recall and related
Precision for the calculation in the same way as in F-score.

4.3 Experimental Results

4.3.1 Results of RQ1 (Comparative Study on Bug Detection). As seen in Table 2, ourmodel outper-

forms the state-of-the-art bug detection baselines in the cross-project setting. Specifically,
our model improves over the baselines in every measurement metric, except the recall values
in the rule-based approaches NAR-miner and FindBugs. The Recall values of NAR-miner and
FindBugs are 6% and 12% higher than ours. However, NAR-miner and FindBugs have a high false
positives rate, i.e., 52% and 66%, that is approximately 1.5x and 2.1x higher than ours. False positives

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 162. Publication date: October 2019.



162:18 Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen

waste developers’ time in investigating incorrect cases. Our model improves F-score over the

baselines DeepBugs, Bugram, NAR-miner, and FindBugs by 1.38x, 1.16x, 2.63x, and 3.57x,

respectively. Importantly, our model can generate fewer false positives than all of the baselines.

Table 2. RQ1. Comparison with the Baselines in the Cross-Project Setting. FP: False Positives

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

Recall 0.68 0.62 0.64 0.72 0.76

Precision 0.39 0.25 0.32 0.11 0.08
F-score 0.50 0.36 0.43 0.19 0.14
FP Rate 0.21 0.41 0.39 0.52 0.66

Table 3. RQ1. Comparison with the Baselines in Detecting Bugs in Unseen Versions of a Project.

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

Recall 0.74 0.63 0.67 0.68 0.73
Precision 0.56 0.27 0.41 0.22 0.15
F-score 0.64 0.38 0.51 0.33 0.25
FP Rate 0.29 0.37 0.38 0.35 0.43

Table 3 shows that our model outperforms four state-of-the-art bug detection baselines

in detecting bugs in the unseen versions of a project. Specifically, our model relatively im-
proves DeepBugs, Bugram, NAR-miner, and FindBugs by 107%, 37%, 155%, and 273% respectively,
in terms of Precision, and by 69%, 25%, 92%, and 156% respectively, in terms of F-score.

Furthermore, consolidating the results in Table 2 and Table 3, we can see that including previous
versions of a project in the training can improve the overall effectiveness of all approaches. This
is reasonable because including previous versions of the same project increases the knowledge
to train the model. Our model obtains a large gain in terms of F-score (i.e., increasing 0.13 from
0.51 to 0.64), which shows that our model has a better learning ability in both settings. Although
NAR-miner also obtains a large gain in terms of F-score, its F-score is still very low, i.e., 0.33.
Qualitative Analysis of RQ1. Table 4 and Figure 9 show the overlapping analysis on the 100

top-ranked results from all of the models. As seen, our model discovers more true bugs than all
other baselines. Specifically, 69%, 74%, 71% and 69% of the true bugs detected by DeepBugs, Bugram,
NAR-miner, and FindBugs, respectively, can also be detected by our model. Although DeepBugs,
Bugram, NAR-miner, and FindBugs can detect 8, 9, 7, and 4 true bugs that our model cannot detect,
our model detects 30, 23, 31, and 39 more new true bugs than those baseline models, respectively.
The key reason for our model to detect more bugs than DeepBugs and Bugram is that it combines
both local and global contexts, along with program dependencies. On the other hand, the rule-based
approaches, i.e., NAR-miner and FindBugs, are less flexible than our model because their rule-based
detection engine is strict and cannot match the bugs that are not encoded in their dataset of rules.

4.3.2 Results of RQ2 (Code Representation Comparative Study). Table 5 shows that our code

representation with local and global contexts is more suitable than other existing code

representations in bug detection in the cross project setting. Specifically, our approach can
outperform the five baselines using different code representations in every measurement metric,
except that Recall of Tree-based LSTM code representation is 21% higher than ours. However,
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Table 4. RQ1Qualitative Analysis on the Top 100 Reported Bugs of the Approaches.

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

# of True Bugs 48 26 34 24 13
Related Recall 0.70 0.38 0.49 0.35 0.19

Related Precision 0.48 0.26 0.34 0.24 0.13
Related F-score 0.58 0.32 0.41 0.29 0.16

Fig. 9. Overlapping Among Results from Our Model and the Baselines in RQ1

Table 5. RQ2. Comparison with the Baselines in the Cross-Project Setting.

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
based
LSTM

Code
Vectors

Recall 0.68 0.67 0.71 0.69 0.82 0.70
Precision 0.39 0.19 0.24 0.17 0.09 0.15
F-score 0.50 0.30 0.36 0.27 0.16 0.25
FP Rate 0.21 0.35 0.36 0.43 0.69 0.45

Table 6. RQ2. Comparison with the Baseline Code Representations in Detecting Bugs in Unseen Versions

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
based
LSTM

Code
Vectors

Recall 0.74 0.69 0.57 0.64 0.61 0.59
Precision 0.56 0.42 0.33 0.41 0.21 0.25
F-score 0.64 0.52 0.42 0.50 0.31 0.35
FP Rate 0.29 0.38 0.34 0.39 0.44 0.41

Tree-based LSTM has much lower Precision (i.e., 9%) and higher false positives rate (i.e., 69%) that
is 2.29X higher than our false positives rate, thus, making Tree-based LSTM impractical.
Our model using path-based code representation with local and global contexts can improve

relatively over all of the five baseline code representations: DeepSim, DL-similarity, code2vec,
Tree-based LSTM, and Code Vectors by 67%, 38%, 82%, 206%, and 101%, respectively, in terms of
F-score. Importantly, our false positives rate is lower than all of the baselines.

Table 6 shows that our code representation is alsomore suitable than other existing code

representations in detecting bugs in unseen versions of a project by including other pre-

vious versions of the project in training data. Our approach can outperform all of the baseline
code representations in every measurement metric. Overall, the effectiveness of all approaches on
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detecting bugs in an unseen version of a project can be improved by adding more previous versions
of the project into training.
Qualitative Analysis of RQ2. We conduct the overlapping analysis on the results from all of the

models. Table 7 and Figure 10 show that our model detects 64%, 79%, 67%, 67%, and 65% of the bugs
that DeepSim, Deep Learning Similarity, code2vec, Tree-based LSTM, and Code Vectors detect,
respectively. Although the five baselines can detect some true bugs that ours cannot detect, our
approach can detect 32, 21, 22, 34, and 33 new true bugs that the code representations DeepSim, DL
similarity, code2vec, Tree-based LSTM, and Code Vectors cannot detect. Thus, our representation
is more suitable than the baselines in bug detection in the cross-project setting.

Table 7. RQ2. Qualitative Analysis on the Top 100 Reported Bugs of Each Model.

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
based
LSTM

Code
Vectors

# of True Bugs 48 25 34 39 21 23
Related Recall 0.65 0.34 0.46 0.53 0.28 0.31

Related Precision 0.48 0.25 0.34 0.39 0.21 0.23
Related F-score 0.55 0.29 0.39 0.45 0.24 0.26

Fig. 10. Overlapping Among Results from Our Model and the Baselines in RQ2.

Table 8. RQ3. Sensitive Analysis of the Impact of Different Factors on Our Approach. LC: Local Context. PDG:

Program Dependency Graph. DFG: Data Flow Graph. Attention: Multi-head Attention.

Models Precision Recall F-Score

LC 0.19 0.75 0.30
LC+Attention 0.2 0.75 0.32
LC+PDG 0.29 0.54 0.38
LC+PDG+Attention 0.28 0.71 0.40
LC+DFG 0.26 0.51 0.34
LC+DFG+Attention 0.26 0.66 0.37
LC+PDG+DFG 0.37 0.43 0.40
LC+PDG+DFG+Attention 0.36 0.62 0.46

4.3.3 Results of RQ3 (Sensitivity Analysis). We conducted an experiment to study how different
factors including the Local Contexts, the Multi-Head Attention, the Program Dependency Graph
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and Data Flow Graph (both graphs are global contexts) affect our model’s accuracy. Due to the
page limit, we report the results in the cross-project setting.
As shown in Table 8, we build 8 variants of our approach with different factors and their

combinations. We analyze our results in Table 8 as follows:
From LC in Table 8, we can see that by using only local contexts, i.e., context in individual

Abstract Syntax Tree, to model source code, our model can achieve a high recall of 0.75.
To study the impact of the PDG, we compare the results obtained from two variants: LC and

LC+PDG. The results show that adding the PDG as a context can increase Precision and F-score
relatively by 52.6% and 26.7%, but decrease Recall from 0.75 to 0.54 (i.e. 28%). This is because the
PDG puts a stricter condition on source code similarity.
To study the impact of DFG, we compare the results from two variants: LC and LC+DFG. The

results show that adding the contexts in DFG can increase Precision and F-score by 36.8% and
13.3%, but decrease Recall from 0.75 to 0.51 (i.e., 32.0%). Overall, adding global contexts can improve
Precision, but hurts Recall, which reduce the false positives. However, the overall F-score is improved
using either of the two graphs. From the above results, we can see that the PDG can contribute
more than DFG. This is reasonable because the PDG contains richer information than DFG.

To study the impact of Multi-Head Attention, we compare the results from the variants LC and
LC+Attention. We can see that Multi-Head Attention cannot help much if we consider only the
paths within the method’s body because the attention is aimed to put weights on the global context
via the PDG and DFG. However, if we compare LC+PDG and LC+PDG+Attention, we can see that
Recall is improved from 0.54 to 0.71. Similar trends can be observed when we compare LC+DFG and
LC+DFG+Attention, or LC+PDG+DFG and LC+PDG+DFG+Attention. This implies that Multi-head

Attention contributes much in term of improving Recall because it helps better ranking of
the buggy methods in the resulting list.

To compare LC+PDG+DFG with LC+PDG and with LC+DFG, we can see that both of the graphs
in the global context contributes positively on our model’s accuracy. When we put together local
context in LC, global context in the PDG and DFG, and attention, our model achieves the highest
accuracy in all metrics.
Local context enables a high recall. Global context in the PDG andDFG improvesmuch

in Precision and reduces false positive rates due to the stricter similarity condition with

the use of the PDG and DFG. However, it hurts Recall. To make up for such reduction in Recall,
Multi-head Attention mechanism emphasizes on the buggy paths, and helps collect more potential
buggy methods, and push the buggy methods to be ranked higher in the resulting list. Thus,Multi-

head Attention mechanism helps our model make up for the reduction of Recall. As a

result, F-score of our model is improved.

5 DISCUSSION AND IMPLICATIONS

5.1 In-depth Case Studies

Let us present in-depth case studies to understandwhy our attention neural network-based approach
using local and global contexts for learning code representations achieves better results than other
approaches. Let us illustrate via the following case studies.
Case Study 1. This case study shows a typical example of a bug involving multiple interdepen-

dent methods. Figure 11 shows a bug-fix example involving two methods of the project Camel, for
the bug with an id Camel − 12228. The bug report states that Method 1 print( Doc doc, int copies,
boolean sendToPrinter, String mineType, String jobName) has a bug causing "print command fails

in case of multiple copies", as it requires to cancel the loop of print and reduce one parameter int
copies. The second method print(InputStream body, String jobName) has a call (line 6) to Method 1.
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Method 1.

1 - public void print(Doc doc , int copies, boolean sendToPrinter , String mimeType ,

2 String jobName) throws PrintException {

3 + public void print(Doc doc , boolean sendToPrinter , String mimeType , String jobName)

4 throws PrintException {

5 ...

6 }

Method 2.

1
2 private void print(InputStream body , String jobName) throws PrintException {

3 if (printerOperations.getPrintService (). isDocFlavorSupported(printerOperations.

4 getFlavor ())) {

5 PrintDocument printDoc = new PrintDocument(body , printerOperations.getFlavor ());

6 - printerOperations.print(printDoc , config.getCopies(), config.isSendToPrinter (),

7 config.getMimeType (), jobName );

8 + printerOperations.print(printDoc , config.isSendToPrinter (), config.getMimeType (),

9 jobName );

10 }

11 }

Fig. 11. Case study 1: The code fixes are fromCamel version 2.20.0 for the bugCamel − 12228. The errors are

marked in red. For simplicity purpose and page limitation, we only show the key lines of fixes.

Therefore, to fix bug id Camel − 12228, it requires to fix both methods. Both methods are identified
as buggy by our model, but not by the baselines, which consider only individual methods.

The capability to detect this type of popular bugs involving multiple methods is due to the way
we model the relations among paths in the ASTs of a project into code representation. In
the process of code representation learning, we use the dependencies of the entities in the PDG and
DFG to capture the relations among paths from the ASTs of a project. In this way, when analyzing
the contexts in the AST paths and their relations of the above two methods, our model, trained
with existing bug knowledge, syntax, and dependencies from the program entities, can learn to
decide that both methods are buggy.

Other baselines, such as MAR-miner, Bugram, and DeepBugs, do not consider the relationships
among methods and paths from a perspective of a whole version of a project. They often con-
sider methods individually. In the above example, if a model looks only at the second method
print(InputStream body, String jobName) without analyzing the dependencies among AST paths
from both methods, it cannot detect a bug in this method.
Case Study 2. Figure 12 shows an example of two real bug fixes on the same methodmain()

in two versions 0.2.0 and 0.8.0 of the project named pig. The method main() in the version 0.2.0
was fixed before. However, the fix (line 3, Method 3 in version 0.3.0) was marked as a bug in the
version 0.8.0. By including the previous fixes in the version 0.3.0, our approach is able to identify
the main() in the version 0.8.0 as buggy, while the baselines cannot.
Extracting long paths and using attention model to add weights in previous buggy

paths into code representation. Our model adds weights to previous buggy paths and extracts
long AST paths to cover each node in the ASTs to make sure that key information on the bug
in the methods to be considered, which makes our code representation more specialized for bug
detection. In the case study 2, we can see that when the methodmain() was fixed in the version
0.2.0, the AST paths covering the line 3 (i.e., the buggy line) will be given a weight and our model
automatically learns the value for the weight based on a large number of previous fixes. Once the
weight is learned, our model can learn to analyze the same or similar AST paths as buggy with
higher possibilities. Thus, our model can classify the method in the version 0.8.0 as buggy based on
the bug in the earlier version. In addition, our model uses long paths to cover all contexts, such as
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Method 3 in version 0.2.0

1 public static void main(String args [])

2 ...

3 - pigContext.getProperties().setProperty("pig.logfile", logFileName);

4 + if(logFileName != null) {

5 + log.info("Logging error messages to: " + logFileName);

6 + }

7 ...

8 }

Method 3 in version 0.8.0

1 public static void main(String args [])

2 ...

3 - if(logFileName != null) {

4 - log.info("Logging error messages to: " + logFileName);

5 - }

6 pigContext.getProperties (). setProperty("pig.logfile", (logFileName == null?

7 "": logFileName ));

8 configureLog4J(properties , pigContext );

9 + if(logFileName != null) {

10 + log.info("Logging error messages to: " + logFileName);

11 + }

12 ...

13 }

Fig. 12. Case study 2. The code fixes are from project piд version0.2.0 andversion0.8.0 for the bugs, PIG−695
and PIG − 1407. The errors are marked in red and the fixes are highlighted in green. For simplicity purpose

and page limitation, we only show the key lines of fixes that affect both methods.

nodes and their relations in ASTs. In the above example, the long paths help our model cover the
buggy line (line 3 of the method in the version 0.2.0). However, the baselines consider only some
portion of AST contexts. For example, code2vec considers only the most-frequent AST paths (i.e.,
no buggy information is considered in code2vec). In case study 2, code2vec assigns a weight of 0.3
to the paths covering the buggy line (line-3). However, code2vec does not consider the paths with a
weight of 0.3 as a top ranked path, so it misses the buggy path. Also, all other baselines, such as
code2vec, Tree-based LSTM, Code Vectors, and DL Similarity, do not incorporate buggy information in
their code representation learning, which makes them miss important information in bug detection.
Attention models help add weights to buggy paths in learning code representation,

thus improve the ranking, leading to improve Recall. Attention GRU layer and Attention

Convolutional layer extract different types of key information from the AST in a method. Second,
we use a powerful multi-head attention model [Vaswani et al. 2017] to combine the key information
from different attention layers. The baselines only concatenate different vectors into a unified vector
without learning, which may contain less information than our approach in code representations.

Learning to detect bugs, rather than memorization. We checked AST path duplication in
training and testing data and found that 26.1% of paths in testing are in training. Our model achieves
the precision of 39% (i.e., higher that 26.1%), proving that our model is able to learn from data to
detect bugs, rather than simply memorization and retrieving from the stored data.

5.2 Time Complexity

Table 9 shows that all deep learning based approaches take more time to train, which is well
expected. The models can be trained off-line, so the detection time is more important. On average,
our approach uses 4 minutes to finish detecting bugs in a project. Although our model costs more
time in detecting bugs in a project than other baselines except for the FindBugs, there is only 1 or 2
minutes difference between our model and the baselines due to the time complexity of handling
graphs. However, our model performs much better than the baselines on detecting bugs. Due to
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Table 9. Time Consumptions in Minutes of Approaches in Training and Detecting Bugs from a Project under

the setting of detecting bugs in unseen versions of a project. DB: DeepBugs. BR: Bugram. NAR: NAR-miner.

DS: DeepSim. DLS: Deep Learning Similarity. c2v: code2vec. TL: Tree LSTM. CV: Code Vectors. FB:FindBugs.

N/A:not applicable.

Time Ours DB BR NAR DS DLS c2v TL CV FB

Training/Mining Time 654 238 6 2 497 428 125 219 246 N/A

Detection Time 4 2 2 1 2 3 2 2 2 5

the page limit, we report only the running time of the models in the setting of detecting bugs in
unseen versions of a project. The time complexity evaluated in the cross-project setting is roughly
similar as the ones in Table 9.

5.3 Limitations of Our Approach

Through analysis on the bugs that our model cannot detect, we identify the following limitations:

• Our approach does not work well on the bugs about parameters in loops. Our approach examines
all of the contexts in paths and their relations, but our AST path-based modeling cannot
accurately capture the relations among parameters in a loop due to the limitations of our
static analysis approach. Dynamic analysis on execution paths could be useful to complement
with our approach.

• Our approach does not work well on the bugs about the fixes in strings. Our approach does not
analyze the semantics of string literals and variables, so we cannot detect the bugs that is
relevant to changes in string literals. We found that NAR-miner performs better on this kind
of bugs by generating the negative rules to pick out the buggy words in the strings.

5.4 Explanation Ability

To improve the ability to explain the buggy code in our solution, we could improve our solution in
the following two directions in the future:

• Statement-level bug detection. Code statement-level bug detection is a natural next step
of method-level bug detection. In order to detect buggy code lines, on the top of method
information, we plan to utilize and incorporate the following information related to a code
statement, cs : (1) sequential information of characters and tokens in cs ; (2) cs’s relations with
other code statements within one code method; and (3) cs’s relations with other relevant
code statements from other code methods. Based on the above information, we plan to build
code representations for code statements and propose deep learning based approaches to
classify code statements.

• Fine-grained bug classification. In this paper, our focus is to determine whether a method
is buggy or non-buggy. In the future, we plan to show the types of bugs associated with a
detected code statement or method. To do so, we first plan to study bugs collected in our big
dataset and manually create a small well-classified dataset of bugs. Next, we will explore to
develop deep learning and active learning based approaches to automatically label more bugs
using the small dataset of bugs as a seed. Last, we can develop and train machine learning
(including deep learning) models on the built large dataset containing code and bug types to
conduct more explainable bug detection.

6 RELATED WORK

Here, we summarize some studies relevant to our study.
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6.1 Bug Detection

Many techniques have been developed for rule-based and learning-based bug detection. Some
existing rule-based bug detection approaches, such as [Bian et al. 2018; Cole et al. 2006; Engler
et al. 2001; Jin et al. 2012; Olivo et al. 2015; Toman and Grossman 2017], are unsupervised and
very efficient. However, new rules are needed to define to detect new types of bugs, for example,
in FindBugs [Hovemeyer and Pugh 2007]. The mining-based approach in NAR-miner [Bian et al.
2018] extracts negative rules to detect bugs and outperforms rule-based approaches that are based
on mining positive code rules. Our experiment results show that it only costs NAR-miner 1 minute
to perform bug detection on a project. However the mining-based approaches mainly suffer the
problem of high false positive (FP) rates, such as the NAR-miner has a high FP rate, i.e., 52% in the
cross-project setting, which make them impractical for daily use. When comparing our approach
with the existing state-of-the art rule-based and mining approaches, the main differences are as
follows. First, we consider the relations among paths from different methods for detecting cross-
method bugs. However, they normally work on individual methods and cannot work well on the
cross-method bugs. Second, our approach covers path information in an AST in order to detect
very detailed bugs in each method, while the they often consider the important rules and may miss
some information outside of their rules.
There exist machine learning-based bug detection approaches, including the deep learning

techniques [Pradel and Sen 2018] and traditional machine learning techniques [Engler et al. 2001;
Li and Zhou 2005; Liang et al. 2016; Wang et al. 2016a,b; Wasylkowski et al. 2007]. For example,
the Bugram [Wang et al. 2016a] uses n-gram models to rank the methods and then picks the top-
ranked methods as buggy methods. DeepBugs [Pradel and Sen 2018] uses deep learning techniques
to propose a name-based bug detection approach. In this paper, our approach is also using the
deep learning techniques to train the models and classify methods into buggy or non-buggy. Our
approach is different from the existing learning-based approaches in the following ways. First, like
the rule-based approaches, the existing learning-based approaches do not consider the relations
among paths across multiple methods. In our code representation learning step, we model the
relations among paths from different methods using the dependencies of entities in the PDG and
DFG, in addition to the AST nodes of a path. Second, our approach uses long paths of an AST to
cover all of the AST nodes for representing local context, while other existing approaches often
use part of method information to detect bugs, such as name-based identifier representation and
frequent n-grams. Our results show that our approach can outperform all of the studied baselines.

6.2 Code Representation Learning

The recent success in machine learning has lead to strong interest in applying machine learning
techniques, especially deep learning, to program language (PL) analysis and software engineering
(SE) tasks, such as automated correction for syntax errors [Bhatia and Singh 2016], fuzz testing
with probabilistic, generative models [Patra and Pradel 2016], program synthesis [Amodio et al.
2017], code clones [Li et al. 2017; Smith and Horwitz 2009; White et al. 2016], program classification
and summarization [Allamanis et al. 2016; Mou et al. 2014], code similarity [Alon et al. 2018;
Zhao and Huang 2018], probabilistic model for code [Bielik et al. 2016], and path-based code
representation [Alon et al. 2018]. In the above PL and SE tasks, all of the above approaches learn
code representations using different program properties. Although the learned code representations
are not proposed for detecting bugs, they still very relevant to our study, as one important step of
our approach is to learn bug detection specialized code representation. Different from the existing
code representation learning approaches, we learn code representation using the AST, Program
Dependency Graph and Data Flow Graph, and different attention-based neural networks. More
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importantly, we incorporate the previous bug fixes into our code representation using an attention
mechanism. Our results show that our code representation is more suitable for detecting bugs than
the studied baselines, such as the baseline code representations using tokens and identifiers.

7 THREATS TO VALIDITY

We have identified the following threats to the validity:
Implementation of baselines. To compare with existing bug detection approaches, we have

re-implemented a learning-based approach, Bugram [Wang et al. 2016a], since the Bugram code
has been removed from the public repository. The source code of other baselines studied in our
study is publicly available and we directly use their code in our experiments.
The Bugram paper reported a slightly higher precision and F-score than what we reported

using our implementation of Bugram in this paper. One possible reason is that Bugram performs
differently on different datasets and some implementation details are not mentioned in their paper,
which makes our version of Bugram slightly different from the one in the original paper. However,
we tried our best to build and tune the Bugram parameters on our dataset and this is the best effort
we can make when the code is not publicly available. We tuned our approach and Bugram both on
our dataset, which would make it fair for both of our approach and Bugram.
Applying all baselines on our dataset. Some baselines reported better results in their original

papers than the ones we obtained in our paper. The main reason is that some baselines were not
evaluated on Java code. Although we did not compare our tool with the baselines on their datasets,
we compare all approaches on our collected dataset and tune them for the best results.

Collecting bug reports. During the bug report collection, we solely rely on the bug metadata
that is manually created by the developers. We only download the bug reports with tags łbug"
and łresolved or fixed". However, sometimes, a bug report marked as łbug" is not really a bug, but
rather a code refactoring, which is commonly well-known problem in bug management. Due to the
large amount of bug reports collected, we cannot verify all of them and make sure all of our data is
correctly marked, which is common in large-scale data analysis. However, when evaluating our
results, we also manually verify the top ranked 100 bugs to identify the true bugs to try our best to
minimize this potential bias in our study.
Verifying true bugs in our qualitative analysis. Following prior studies [Bian et al. 2018;

Gruska et al. 2010; Li and Zhou 2005; Livshits and Zimmermann 2005; Wang et al. 2016a], we
manually check if the reported bugs in qualitative analysis are true bugs. Although this part of
work is common in studies for bug detection, this process will bring bias to our results since the
authors of this paper are not the developers of these projects. Sometimes we may misunderstand
the code and come up with the wrong idea of a bug being a true bug.
Selection of programming languages. In this study, we only apply our approach on Java code.

Thus, we cannot claim that our approach is generic for all programming languages. We choose Java
code because Java is a widely used programming languages with many mature projects. However,
the key drivers of our approach outperforming the baselines are general across programming
languages: AST paths, PDG, DFG, and attention mechanism. Our methodology is general, no
techniques/algorithms on the above extracted programming structures are tied to any programming
languages. However, the results might be different for different languages. We have published
our code and data in [Pro 2019] that can be learned to apply on other languages using the same
trees/graphs: AST, PDG, and DFG.

8 CONCLUSION

In this paper, we propose a new deep learning based bug detection to improve the existing state-of-
the-art detection approaches. The key ideas that enable our approach are (1) modeling and analyzing
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the relations among paths of ASTs from different methods using the Program Dependency Graph
(PDG) and Data Flow Graph (DFG); and (2) using weights and attention mechanism to emphasize
previous buggy paths and differentiate them from non-buggy ones.
In our approach, we first propose an attention-based neural network to learn bug detection

specialized code representation by incorporating previous bug fixes, paths of an AST within a
method (i.e., local context), and program graphs modeling relations among ASTs of a whole project
(i.e., global context). In the process of building local context code representation, we add weights
to buggy paths and use three attention-based neural networks to learn contexts in the long paths
on an AST. As a bug can involve multiple methods of a project, we model the relations among
methods using the PDG and DFG as global context, and incorporate the global context into learned
the local context code representation. Specifically, we encode PDG and DFG into low-dimensional
vectors using the Node2Vec to learn global context path vectors. We combine the local and global
path vectors into a unified path vector. Then, we append all path vectors of a method to obtain the
method representation. Second, we use a CNN architecture to classify a given set of methods into
buggy or non-buggy by analyzing the method representations.
We evaluate our approach against a set of state-of-the-art baselines in two settings: detecting

bugs in an unseen project and detecting bugs in an unseen version of a project. Our empirical
studies show that our approach can outperform all of the studied state-of-the-art approaches in
both settings. Specifically, we can gain a relative improvement up to 168% in terms of F-score.
Also our approach has a lower false positive rate than any baseline in both settings, which makes
our approach more suitable for daily-practical use. Furthermore, compared with several types of
existing code representations, our path-based code representation is more suitable for bug detection.
In the near future, we plan to evaluate our approach on different programming languages, e.g.,

Python and C, to gain more insights on the effectiveness of our approach on other PLs. Also, we plan
to investigate other techniques to efficiently model graphs nodes and their surrounding structures.
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